TWO-PARAMETER FAMILY OF LIQUID FLOWS ABOUT
A PLATE IN THE PRESENCE OF A SMALL REVERSE FLOW

V. 8. Badovskii UDC 532.528

Figure 1 shows a diagram of a two-dimensional steady-state flow of an ideal fluid about a plate. Included
in the figure are the main notation and the coordinate system used here. The flow diagram differs from the
normal Efros scheme in that the critical points H, and H, behind the plate are separated along the y axis by the
distance d, while the streamlines passing these points are the straight lines y = +d/2 after branching. We will
refer to the band |y | =< d/2 as a fixed wake. Together with reverse jets of total thickness ¢, this wake is real-
ized at x < 0 on the second Riemann surface.

Let p,, and v, be the pressure and velocity of the potential flow at infinity; p, and v, are the pressure in
the channel and the velocity on its boundary streamline; Q@ = 2(pa, — po)/ovh = (vy/v=)® — 1 is the cavitation num-
ber; [ is the length of the plate,

We will find the solution by using the method of Chaplygin's singularities, which was examined in adequate
detail in [1] with reference to the Efros problem. As in [1], we choose the region of the parametric variable t
to be a half-circle of unit radius. Figures 1 and 2 show the coincidence of the points of the physical plane z =
x + iy and the plane t = ¢ +iy. Here, t(C) =ic, t(H;) =t(H,) =ih.

Let w be the complex potential of the flow. Comparing the flow pattern being examined here and the Efros
scheme, we conclude that the expressions for dw/dt and dw/dz coincide completely in both flows:
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Formally, Egs. (2) and (3) are identical to the corresponding expressions of the Efros problem. However,
in the latter the mathematical parameters h and ¢ are connected by nonambiguity condition {i], while there is
no such connection in the present case. We will express the quantities vy, N, &, and d through h and c.

The velocity v, in the reverse flows is given by Eq. (2), while the coefficient N is determined by the plate
dimension [:
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where integration is carried out over the half-circle BOA on which t = eld (see Fig. 2). After (3) is inserted

into the integral and simple transformations are performed, we have the relation
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which is quite different from the analogous relation (23.6) in [1].

Zhukovskii. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 49-52,
May-June, 1987. Original article submitted April 17, 1986.

0021-8944/87/2803-0363 $12.50 ® 1987 Plenum Publishing Corporation 363



3/251 Ua a
g e W (.

r}rxﬂﬂ/f

uaau_zw V X
_______ H, }
fz

B %

The thickness of the reverse flows ¢ is determined by integrating (3) over an infinitesimally small one-
quarter of a circle with its center at the point t = 0:
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To calculate the transverse dimension of the wake d, we integrate (3) over a circle of small radius with
its center at t =ic (which corresponds to motion around a circle of fairly large radius in the physical plane):

s dz

This integral is determined by the residue of the function dz/dt at the point t =ic. Since

dz N f ()

—mm FARA

dtT (t—ic)® Q)

where f(f) = (¢ + iR)¥(ht + %t + X2 — 1), g(t) = {(t + i) + 1), then the residue of dz/dt depends on the
derivative of the ratio f/g at the point t =ic:

Having taken the logarithmic derivative, we finally obtain
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while the coefficient N is given by Eq. (4). In a normal Efros flow F(c, h)= 0 (nonambiguity condition), while in
the present case F(c, h), in accord with (6), determines the transverse dimension of the wake d.

Thus, the family of flows being studied is unambiguously found by assigning the parameters cand h < ¢
in accord with Egs. (2) and (4)~(7) under the condition that the velocity of the incoming flow v, and the plate
dimension I are given,

Figure 3 shows theoretical dependences of the thickness of the reverse flows & on the transverse dimen-
sion of the fixed wake d with constant values of the velocity vy (vy and d are taken as independent hydrodynamic
parameters). Lines 1-7 correspond to v, =1, 1.05, 1.1, 1.2, 1.5, 2.0, and 3.0. A characteristic feature is a_
monotonic and nearly linear reduction in the size of the reverse jet with an increase in the size of the wake d
for all -‘;o >1. The highest values of 6 at v, = const are reached at d =0, i.e., they correspond to the pattern of
flow in accord with the Efros scheme, the latter being a special case of the two-parameter family being ex-
examined here. The minimum value 6 =0 is the same for any value of vy >1. It follows from (5) that this case
corresponds to h = 0, ¢ = 0. The coefficient N and d remain finite:

B 7]
_l=8 sin 0 (1} sin0) 40
N J {t + &+ 2c% cos 26)%’

364



I5} 7 2 3 4d 0 05 c
Fig. 3 Fig. 4
Gon ¥ Uil d)

l 6(1_102)(1?_64)2'

A simple analysis shows that at h = 0 (6 =0), free streamlines converging from the sharp edges of the plate
approach the curves y = +d /2 along tangents at the points H, and H,, while the parts of the streamlines y =
+d/2, x < Xy disappear. These segments leave the second Riemann surface at h = 0. As a result, it turns
out that the minimum value of § =0(d > 1) is attained in the well-known Zhukov—-Roshko single-parameter
family of flows (see, e.g., [1]). Thus, this family is also a special case of the flows examined here.

Using the integral theorem of impulses by analogy with [1] (p. 181), we can obtain an expression for the
drag coefficient if we assume that the pressure on the rear side of the plate is equal to py

cx = 280o(1 + o) + 0. (8)

Here, with assigned values of Q and d, the quantity & is a function of these two variables. As might be expected,
in the limiting cases (d=0,06 = 0; 6 =0, d >1), Eq. (8 gives the familiar expressions for the drag coeffi-
cient of a plate in a flow in accord with the Efros and Zhukov—Roshko schemes. It was established from cal-
culations that at vy = const, an increase in d leads to a monotonic increase in cx, which is extremely small (it

is known that the difference in the drag coefficients for flows about a plate in accord with the Efros and Z hukov —
Roshko schemes is no greater than 0.2% up to v, = 3).

We should note certain features of asymptotic solutions in the two-parameter family in regard to Kirch-
hoff flow. Figure 4 shows the region of permissible values of the mathematical parameters h and ¢. One of
the boundaries of this region (curve 1) corresponds to the family of Efros flows in which h and ¢ are connected
by the relation F(c, h) =0 (d = 0). The transition to Kirchhoff flow (¢ — 0) in this class is well known:
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just as the transition to Kirchhoff flow along boundary 2 (the family of Zhukov—Roshko flows; h = 0, ¢ — 0):
’ 8 =10, dy>0, o, = 2nf(re 4 4),
i.e., it is connécted with the disappearance of the reverse flow.
Now let 'us make the trangition to Kirchhoff flow (h — 0, ¢ — 0) within the class being examined.

Let b= 4+ B (B<<1) and ¢ —0. Then from (4) UN = 2(n + 4), while from (5) 8, = «/[2(ax -+ 4)].Simple
analysis of (6) shows that dy = #(1 — B)/[2(n 4- 4)], while since Q — 0, then ¢, = 2x/(n + 4).

This means thai at the limit we obtain a Kirchhoff flow in which ¢wo reverse flows are separated by an
#nount dx detzrmined by the coefficient 3. However, their total thidkness is egwal to the "Efros" value.
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It is natural that the drag of the plate at the limit remains the same, while the magnitude of the reverse flow
may be fairly arbitrary but remain within the limits 0 < § < n/[2(n + 4)1, i.e., be bounded above by the nffros!
value. If h ~ c@ (@ >2) and ¢ — 0, then 5, =0, d, — .

We thank G. I. Taganov for initiating this investigation.
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USE OF THE MODEL OF A SECOND DISSIPATIVE LAYER
AND A WAKE TO DESCRIBE QUASISTEADY CAVITATIONAL
FLOW ABOUT A FLAT PLATE

G. I. Taganov UDC 532.527

The model of a second dissipative layer and a wake in [1] was used for steady flow of a viscous incom~
pressible fluid about a flat plate within a large range of angles of attack ayp < @ < 90° [2]. Comparison of the
relations cx =f(a) and ¢, =f(w) obtained in [2] (see [3] also) with experimental data showed that the model under-
estimates cx and cy in this range by about 15%. This underestimation was explained in [2] by the fact that the
distinctly nonsteady flow seen under experimental conditions is replaced by a quasisteady flow in the model.
Moreover, the model does not consider the energy associated with pulsative motion in the near wake, which
was directly confirmed experimentally in [4]. The suppression of nonsteady pulsations behind a flat plate (the
experimentally-fixed reduction in the frequency of vortex shedding) in a flow at an angle @ = 90° through the use
of a splitter plate of roughly chord length located along the symmetry plate of the flow in the separation zone
also leads to a reduction in cx by about 15% at the limit, i.e., to as close an agreement between the theory and
experiment as can be expected from a hydrodynamic model. If we consider that the problem of theoretically
determining the drag of a flat plate located perpendicular to an incoming flow has attracted the attention of
physicists and hydrodynamicists for the last two centuries, then the success of the model of a second dissi-
pative layer and wake in regard to the solution of this problem offers hope and grounds for use of the model to
solve a related hydrodynamic problem (the subject of the present investigation) — theoretical determination of
the resistance force acting on a plate in a separated cavitational flow as a function of the determining param-
eter —the cavitation number Q = 2(p, — pc)/p\z?=° (pc is the pressure in the cavity behind the plate}.

There arises the question of the need for a new (energy) approach to an old hydrodynamic problem which
was theoretically described by the middle of the present century by any of four mathematical models. While
differing somewhat from each other at Q = 0, at @ — 0 these models approach the classical Helmholtz —Kirchhoff
model ¢y = 27/ (T +4) ~ 0.88 and are in fair agreement with the experimental data in the range of cavitation
numbers 0 < Q < 1.0.

Let us discuss the considerations which motivated us to develop a new approach.

First, it has long been known that separated cavitational flow is nonsteady and that it is not possible to
construct a steady flow of an incompressible fluid which can reliably describe the flow observed experimen-
tally at Q = 0 without contradicting physical reality. Since the well-known mathematical models of flow about
a plate at Q = 0 are steady-state models, the drag values obtained from them can, strictly speaking, be regarded
only as conditional. This conditionality is due to the effect of other bodies artificially placed in the flow on the
test body in the Ryabushinskii and Zhukov—Roshko models and to the effect of the flow on other sheets of the
Riemann surface in the Efros and Tulin models.

Secondly, the well-known mathematical models ignore the existence of a fluid wake with lost momentum
behind the body —cavity system. Thus, the theory loses the feedback which is present in a cavitational flow be-
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