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Figure  1 shows a d iagram of a two-dimensional  s teady-s ta te  flow of an ideal fluid about a plato. Included 
in the fi~ure a re  the main  notation and the coordinate sys tem used hero.  The flow d iagram differs f rom the 
normal  Efros  scheme in that the cr i t ical  points H 1 and H 2 behind the plate are  separated along the y axis by the 
distance d, while the s t reaml ines  pass ing these points are  the s t ra ight  lines y = ~d/2  after branching. We will 
r e f e r  to the band [ y [ <__ d/2  as a fixed wake. Together  with r eve r se  jets of total thickness 5, this wake is r ea l -  
ized at x < 0 on the second Riemama surface.  

Let p~ and voo be the p r e s s u r e  and velocity of the potential flow at infinity; P0 and v 0 are  the p r e s s u r e  in 
the channel and the velocity on its boundary s t reamline;  Q -- 2(p~ - po)/pv~ --- (Vo/V~) 2 - I is the cavitation num- 
ber; l is the length of the plate. 

We will find the solution by using the method of ChaplyginTs singulari t ies ,  which was examined in adequate 
detail in [1] with re fe rence  to the Efros  problem. As in [1], we choose the region of the pa ramet r i c  variable t 
to be a ha l f -c i rc le  of unit radius.  F igures  1 and 2 show the coincidence of the points of the physical plane z = 
x + i y a n d t h e p l a n e t  =~ + i ~ .  Here,  t(C) = ic ,  t(H 1) =t(H 2) =ih.  

Let w be the complex potential of the flow. Comparing the flow pat tern being examined here and the l~fros 
scheme,  we cnnclude that the express ions  for  dw/dt and dw/dz coincide completely in both flows: 

d~, ( t '  - -  1) (t ~ + h ~) (hh  ~ + 1) 
-~T -- Nv0 ~ (7-+c--~ ~-;2-'~)T , (i) 

dw (t  - -  ih) (ht  - -  i) (t - -  i). 
d-'z V~ ( ~  ih) (hi  -~- ~) ( t  + i) '  

-Vo -~- % = (c +h)  ( t -y  ch) ( l -~  c). (2) 
v~o (c -- h) (i -- ~h) (1 -- ~)' 

d~ N (t + ~h) ~ (hi + ~)~ (t + ~)~ (d  - -  i) 
d-7 = t (t ~ + ~)~ (~ t  2 + ~)~ (3) 

Formal ly ,  Eqs.  (2) and (3) are  identical to the corresponding express ions  of the Efros  problem. However, 
in the la t ter  the mathemat ica l  p a r a m e t e r s  h and c are  connected by nonambiguity condition [1], while there  is 
no such connection in the presen t  case .  We will express  the quantities v 0, N, 6, and d through h and c. 

The velocity v 0 in the r eve r se  flows is given by Eq. (2), while the coefficient N is determined by the plate 
dimension l: 

dz 
i t  ~ ~ dt~: 

BOA 

where integration is ca r r i ed  out over  the ha l f -c i rc le  BOA on which t = e i0 (see Fig. 2). After  (3) is inserted 
into the integral  and simple t rans format ions  are  per formed,  we have the relat ion 

g/~ 
l 8 ~  sinO(t+sinO)(t-l-h~+2hsinO)~ dO, 

= (t  d" c4 -{- 2c" cos 20) ~ 
o 

which is quite different f rom the analogous relat ion (23.6) in [1]. 
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The t h i c k n e s s  of  the  r e v e r s e  f lows 6 is d e t e r m i n e d  by in t eg ra t ing  (3) o v e r  an in f in i t e s ima l ly  s m a l l  o n e -  
q u a r t e r  of  a c i r c l e  with i ts  c e n t e r  at the point  t = 0: 

N h ~ 
~ - -  T = ~-7- 7 "  (5) 

To ca lcu la t e  the t r a n s v e r s e  d imens ion  of  the wake d, we i n t eg ra t e  (3) o v e r  a c i r c l e  of sma l l  r ad ius  with 
i t s  c e n t e r  at  t = ic (which c o r r e s p o n d s  to mot ion  around a c i r c l e  of f a i r l y  l a r g e  r ad iu s  in the  phys ica l  plane):  

f f  dt " 

This  in teg ra l  is d e t e r m i n e d  by the  r e s i d u e  of  the funct ion d z / d t  at  the point  t = ic.  Since 

az N ! (0 
a'7 = (t - ~c) 2 g (t)' 

where  ](t) = (t -{- ~h)~-(ht q- i)2(t + i)2(t 2 - -  t ) ,  git) - - . t ( t  q- ic)~(c~t ~ q- t) ~, then the  r e s i d u e  of  d z / d t  depends  on the  
de r iva t i ve  of  the r a t i o  f / g  at  the point  t = ic: 

d /  / d  
d t g  = - -  t �9 ~ ~ x l n j _ l n g j .  

Having  taken  the l o g a r i t h m i c  de r iva t i ve ,  we f inal ly  obta in  

-~ d N (c + h) ~ ( t  + oh) ~ (t  + c) ~ ( t  -" ~) 
d---- T = n -7- c~ (i -- c') ~ F (c, h). (6) 

H e r e  

F (c,. h) = t h t i 
+ ~ + ~ _ .----~-- 7 '  (7) 

while the coef f ic ien t  N is  g iven by Eq. (4). In a n o r m a l  l~fros flow F(c,  h) 0 (nonambigui ty  condit ion),  while in 
the  p r e s e n t  c a s e  F(c,  tl), in  a c c o r d  with (6), d e t e r m i n e s  the  t r a n s v e r s e  d i m e n s i o n  of the wake d. 

Thus ,  the  f ami ly  of f lows being s tudied is  unambiguous ly  found by a s s ign ing  the p a r a m e t e r s  c and h _< c 
in a c c o r d  with Eqs .  (2) and (4)-(7) under  the condi t ion that  the ve loc i ty  of the  incoming  flow v~ and the  p la te  
d i m e n s i o n  l a r e  given.  

F i g u r e  3 shows t h e o r e t i c a l  dependences  of the  t h i cknes s  of the  r e v e r s e  f lows 6 on the t r a n s v e r s e  d i m e n -  
s ion of the f ixed wake d with cons tan t  va lues  of  the ve loc i ty  T 0 (T 0 and d a r e  t aken  as  independent  h y d r o d y n a m i c  
p a r a m e t e r s ) .  L ines  1-7  c o r r e s p o n d  to v 0 = 1, 1.05, 1.1, 1.2, 1.5, 2.0, and 3.0. A c h a r a c t e r i s t i c  f e a tu r e  i s  a 
monoton ic  and n e a r l y  l i nea r  r educ t ion  in the  s i z e  of the r e v e r s e  je t  with an i n c r e a s e  in the s i ze  of  the wake 
fo r  all T 0 > 1. The h ighes t  va lues  of 5 at  v 0 = c o a s t  a r e  r e a c h e d  at d = 0, i .e . ,  they  c o r r e s p o n d  to the p a t t e r n  of  
flow in a c c o r d  with the  ]~fros s c h e m e ,  the  l a t t e r  being a spec ia l  c a s e  of  the  t w o - p a r a m e t e r  f ami ly  being ex -  
examined  he re .  The m i n i m u m  value  6 = 0 is  the  s a m e  fo r  any value of T 0 > 1. It fo l lows f r o m  (5) tha t  this  ea se  
c o r r e s p o n d s  to h =- 0, c ~ 0. The coef f i c i en t  N and d r e m a i n  finite:  

~I~ 
l ~ sin 0 (1 q- sin0) d0 

= 8 (~[ .~_ r _~ 2V2 COS 20) 2, 0 

364 



o,~ 

o,i 

0 
Fig .  3 

o,51 �9 Lg 
o o,5 c 

Fig.  4 

N ( i + c )  2 ( i + c  2) 

A s imp le  ana lys i s  shows  tha t  at h -- 0 (6 = 0), f r e e  s t r e a m l i n e s  conve rg ing  f r o m  the sha rp  edges  of the plate  
app roach  the c u r v e s  y = ~-d/2 a long tangen ts  at the points  H 1 and H 2, while  the p a r t s  of  the s t r e a m l i n e s  y = 
~d /2 ,  x < x H d i s a p p e a r .  These  s e g m e n t s  leave  the  second R i e m a n n  s u r f a c e  at h ~ 0. As a resu l t ,  it t u rn s  
out  tha t  the m i n i m u m  value of 6 = 0 (d > 1) is a t ta ined in the wel l -known Z h u k o v - R o s h k o  s i n g l e - p a r a m e t e r  
f ami ly  of  f lows (see,  e .g. ,  [1]). Thus,  this  f ami ly  is a lso  a spec ia l  c a s e  of the f lows examined  he re .  

Us ing  the i n t eg ra l  t h e o r e m  of  i m p u l s e s  by ana logy  with [1] (p. 181), we can  obtain  an e x p r e s s i o n  fo r  the 
d r a g  coef f ic ien t  if  we a s s u m e  that  the p r e s s u r e  on the r e a r  s ide of the plate  is equal to P0: 

% = 2~vo(i -~ ~0) -~ d-Q. (8) 

Here ,  with a s s igned  va lues  of  Q and d, the quant i ty  5 i s  a funct ion of  these  two va r i ab l e s .  As migh t  be expected,  
in the l imi t ing  c a s e s  (d = 0, 5 ~ 0; 5 _= 0, d > 1), Eq.  (8) g ives  the f a m i l i a r  e x p r e s s i o n s  fo r  the d r a g  coef f i -  
c ient  of  a p la te  in a flow in  a c c o r d  with the ~ f r o s  and Z h u k o v - R o s h k o  s c h e m e s .  It was  es tab l i shed  f r o m  c a l -  
cu la t ions  tha t  at v 0 = eons t ,  an i n c r e a s e  in d leads  to a monoton ic  i n c r e a s e  in Cx, which is  e x t r e m e l y  sma l l  (it 
is  known that  the d i f f e r ence  in the  d r a g  coef f i c ien t s  fo r  f lows about a plate  in a c c o r d  with the l~fros and Z h u k o v -  
Roshko  s c h e m e s  is no g r e a t e r  than 0.2% up to ~0 = 3). 

We should note c e r t a i n  f e a t u r e s  of a sympto t i c  so lu t ions  in the t w o - p a r a m e t e r  f ami ly  in r e g a r d  to  K i r c h -  
hoff f low. F i ~ o r e  4 shows the reg ion  of  p e r m i s s i b l e  va lues  of  the m a t h e m a t i c a l  p a r a m e t e r s  h and c. One of 
the b o u n d a r i e s  of  this  r eg ion  (curve  1) c o r r e s p o n d s  to the fami ly  of ~ f r o s  f lows in which h and c a r e  connec ted  
by the  r e l a t i on  F(c ,  h) = 0 (d = 0). The t r ans i t i on  to Ki rchhoff  flow (c - -  0) in this  c l a s s  is well known: 

jus t  a s  the t rm]s i t ion  to Ki rchhof f  flow a~ong ~ur~davy  2 {the ~amily of Z h u k o v - R o s h k o  flows;  h = 0, c -~ 0): 

i .e . ,  i t  is  c o n m ~ t e d  With ~,he d i s a p p e a r a n c e  of the r e v e r s e  flow. 

Now 16t ~us make  t h e  C r a ~ 0 n  to  Ki rehhof f  flow (h-+  0, c --~ 0) within the  c l a s s  being examined .  

Le t  h ~ , ~  ~-tic ~ (~ ~<1) and c - -  0. Then f r o m  (4) llN = 2(u § 4), while f r o m  (5) ~ .  = n/[2(~ ~- 4)] ,Simple  
ana lys i s  of (6) shows that  d. ~-#(t - -  fi)/[2(u '+  4)], while s ince  Q -  0, then c~ 2n/(n + 4). 

~ h i s  means  that  at the  l imi t  we obtain  a Ki rchhof f  flow in which  ~r162 r e v e r s e  f lows ~ re  s e p a r a t e d  by an 
~ o u n t  d .  det :~rmined by the  coef f ic ien t  ft. However ,  t he i r  total  ~:~idkne~s iis ~e~a l  ;to ~he " ~ r o s "  value.  

Now let  h ~ ~ { 0 . ~ < : ' ~  i) and c - -  0. It is  e a s i l y  s e ~ a t  

l ~- = 2 (~ + 4), Q ~ ~((~l + ~) c - +  0, 

6-. = ~a~/[2 (~ + 4)1, d ,  =U]~2 (~ + 4)] (a = 1),: 

d - . ~ ( i - - a ) / [ 2 ( a + 4 ) c ] - + ~  ( a # i ) .  , 

However ,  in this  c a s e  

4nr162 ~ t -- ct 4n (1 + (z) c 23 
Cx=2(~_i_4) - t - ~  2 (u+4)  =g-i-4"" 
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It is  na tura l  that  the d rag  of the plate  at the l imi t  r e m a i n s  the s ame ,  while the magnitude of the r e v e r s e  flow 
may  be f a i r ly  a r b i t r a r y  but r e m a i n  within the l imi t s  0 < ~ n/[2(n + 4)], i .e . ,  be bounded above by the "l~fros" 
value. I f h  ~ c(~ (~ >2) and c ~ 0 ,  t h e n 6 .  = 0 , d . - - * ~ .  

We thank G. I. Taganov fo r  ini t iat ing th is  invest igat ion.  
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U S E  O F  T H E  M O D E L  O F  A S E C O N D  D I S S I P A T I V E  L A Y E R  

A N D  A W A K E  T O  D E S C R I B E  Q U A S I S T E A D Y  C A V I T A T I O N A L  

F L O W  A B O U T  A F L A T  P L A T E  

G.  I .  T a g a n o v  UDC 532.527 

The model  of a second d iss ipa t ive  l aye r  and a wake in [1] was used for  s teady flow of a v iscous  incom-  
p r e s s i b l e  fluid about a f iat  p la te  within a l a rge  range  of angles  of a t t ack  ~ c r  < c~ < 90 ~ [2]. Compar i son  of the 
r e l a t ions  Cx = f(c~) and Cy = f(~) obtained in [2] (see [3] also) with exper imen ta l  data  showed that  the model under -  
e s t i m a t e s  Cx and Cy in this  r ange  by about 15~e This  underes t ima t ion  was explained in [2] by the fac t  that  the 
dis t inct ly  nonsteady flow seen  under  expe r imen ta l  conditions is r ep laced  by a quas i s t eady  flow in the model .  
Moreove r ,  the model  does not cons ide r  the ene rgy  assoc ia ted  with pulsa t ive  mot ion in the  nea r  wake,  which 
was d i rec t ly  conf i rmed  exper imenta l ly  in [4]. The suppres s ion  of nonsteady pulsa t ions  behind a f la t  p la te  (the 
exper imen ta l ly - f ixed  reduct ion in the f requency of vor tex  shedding) in a flow at an angle ~ = 90 ~ through the use  
of a sp l i t t e r  p la te  of rougMy chord length located along the s y m m e t r y  plate  of the flow in the separa t ion  zone 
a lso  leads to a reduct ion in Cx by about 15% at the l imit ,  i .e . ,  to as c lose  an a g r e e m e n t  between the theory  and 
expe r imen t  as can be expected f r o m  a hydrodynamic  model .  If we cons ider  that  the p rob lem of theore t i ca l ly  
de te rmin ing  the d rag  of a f lat  p la te  located pe rpend icu la r  to an incoming flow has  a t t rac ted  the attention of 
phys ic i s t s  and hydrodynamic i s t s  for  the l a s t  two cen tur ies ,  then the succe s s  o f  the model  of a second d i s s i -  
pat ive  l aye r  and wake in r ega rd  to the solution of th is  p r o b l e m  of fe r s  hope and grounds fo r  use of the model  to 
solve a re la ted  hydrodynamic  p rob l em  (the subjec t  of the p re sen t  investigation) - t h e o r e t i c a l  de te rmina t ion  of 
the r e s i s t a n c e  fo rce  acting on a plate  in a s epa ra t ed  cavitat ional  flow as a function of the de te rmin ing  p a r a m -  
e t e r  - t h e  cavi ta t ion n u m b e r  Q = 2(p~ o - pc)/PV~ (Pc is  the p r e s s u r e  in the cavi ty  behind the plate).  

The re  a r i s e s  the question of the need for  a new (energy) approach  to an old hydrodynam':c p rob lem which 
was theore t i ca l ly  desc r ibed  by the middle of the p r e sen t  century  by any of four ma themat i ca l  models .  While 
di f fer ing somewhat  f r o m  each o ther  at Q ~ 0, at Q - .  0 these  models  approach  the c l a s s i ca l  H e l m h o l t z - K i r c h h o f f  
model c x = 2w/ (~  + 4) _~ 0.88 and a re  in f a i r  a g r e e m e n t  with the exper imenta l  data  in the range  of cavi tat ion 
number s  0 < Q < 1.0. 

Le t  us d i scuss  the cons idera t ions  which mot iva ted  us to develop a new approach.  

F i r s t ,  it has  long been known that s epa ra t ed  cavi ta t ional  flow is nonsteady and that  it i s  not poss ib le  to 
cons t ruc t  a s teady  flow of an i ncom pres s i b l e  fluid which can r e l i ab ly  desc r ibe  the flow obse rved  e x p e r i m e n -  
ta l ly  at Q r 0 without contradic t ing phys ica l  rea l i ty .  Since the well-known ma themat i ca l  mode~s of flow about 
a pla te  at Q g 0 a r e  s t e ady - s t a t e  mode l s ,  the d r ag  values  obtained f r o m  them can, s t r i c t l y  speaking,  be r eg a rd ed  
only as conditional.  This  conditionality is due to the effect  of o ther  bodies  a r t i f ic ia l ly  p laced  in the flow on the 
t e s t  body in the Ryabushinski i  and Zhukov -R oshko  models  and to the effect  of the flow on o the r  shee ts  of the 
Riemann  su r face  in the t~fros and Tulin models .  

Secondly, the well-known ma thema t i ca l  models  ignore  the exis tence  of a fluid wake with los t  momen tum 
behind the b o d y - c a v i t y  s y s t e m .  Thus,  the theory  loses  the feedback  which is  p r e sen t  in a cavitat ional  flow be-  
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